ALTERATIONS OF GLUCOSE METABOLISM AFTER PILOCARPINE INDUCED STATUS EPILEPTICUS IN IMMATURE RATS

Sonam Kapoor^{1,2}, Lucia Rackova¹, Jan Svoboda², David Kala², Jakub Otahal², Zuzana Brnoliakova¹

¹Institute of Experimental Pharmacology and Toxicology, Center of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, SR; ²Institute of Physiology, ²Czech Academy of Sciences, Videnska 1083, 142 20 Prague, CR;

sonam.kapoor@savba.sk

Introduction

Perinatal hypoxia ischemic insult (HII) is a fatal paediatric neurologic condition that occurs because of the serious birth complications in new-borns [1]. In surviving infants, hypoxiaischemia develops neurological sequelae later in the life as a long-term devastating consequence such as cerebral palsy, epilepsy, developmental delay, cognitive impairment, and behavioral disorders [2]. There are limited diagnostic and therapeutic approaches, thus it's a socio-economic burden. Altered glucose metabolism has been found in various neuropsychiatric diseases including stroke, depression, Alzheimer's disease, or ischemia [3, 4]. The aim of our study was to evaluate the cluster of metabolic biomarkers related to glucose disturbances within the physiological state in lithium-pilocarpine (Pilo) induced statuts epilepticus (SE) of immature rats.

Methods

To induce Pilo SE, male Wistar rat pups were pretreated with lithium chloride (127 mg/kg, n=11) on the 11th postnatal day. After 24 hours, the lithium pre-treated pups were administered either with Pilocarpine i.p. (35 mg /kg b.w., n=6) or saline (0,9% NaCl, n=5) in control group. On the 19th postnatal day, serum was collected [5]. The blood serum samples were analyzed by magnetic bead-based multiplex sandwich immunoassays Bio-Plex Pro Rat Diabetic Assays (Bio-Rad Laboratories, Inc., US) on the Bio-Plex 200 System instrument equipped with Bio-Plex Manager Software's version. 6.1.0.727. The group of evaluated metabolites consisted of ghrelin, glucagon-like peptide 1 (GLP-1), glucagon, leptin and plasmino-gen activator inhibitor-1 (PAI-1). The data were statistically evaluated using Sigma plot Software. One-way analysis of variance (ANOVA) was used to evaluate the difference among all experimental groups (using the Bonferroni multiple comparison test). The level of p < 0.05 was considered as statistically significant difference. Data are expressed as means \pm SEM.

Results and Discussion

We observed the significant changes in cluster of five metabolites measured in Pilo group vs Saline experimental group. The results are indicated in **Table 1**. There was detected significantly lower serum level of ghrelin in Pilo group compared to Saline group. Whereases, GLP-1 and Leptin serum levels were analysed significantly higher in Pilo group than Saline group. Finally, glucagon and PAI-1 serum levels were not detected in Saline group, while their serum levels within Pilo group were skipped up in several orders.

Table 1 The blood serum levels of analyzed biomarkers of glucose metabolism within the status epilepticus (SE) of immature rats. Saline (control group); Pilo - lithium-pilocarpine (exposed group); ND - not detected; Statistics: ANOVA One-way analysis of variance with Bonferroni multiple comparison test, compared experimental groups Pilo *vs* Saline,* p < 0.05 was considered as statistically significant difference, *** p < 0.001.

	PILO		SALINE	
	pg/mL	SEM	pg/mL	SEM
Ghrelin	633.10***	334.44	1896.09	682.72
GLP-1	5150.15***	1767.10	457.70	56.81
Glucagon	5296.98***	550.46	ND	-
Leptin	1841.80***	255.08	313.34	63.83
PAI-1	199.94***	12.15	ND	-

Our data indicates, in accordance with published data, that status epilepticus leads to significant alterations in glucose metabolism regulation in immature rats [6-10]. The role of these changes is not well understood, although several mechanisms interacting with seizures, such as anticovulsant effect of ghrelin, has been identified [11].

Conclusions

In conclusion, our data indicates an important role of systemic glucose metabolism regulation and suggests its importance in epileptogenesis. Interaction with glucose metabolism thus represents a potential pharmacological target in acquired epilepsy.

Acknowledgement

This study was supported by grants: EU project ITMS2014+313021Y920, APVV-18-0336 and VEGA 2/0104/21.

Literature

- [1] Lai M.; Yang S. Animal Models of Human Pathology. 2011, Article 609813
- [2] Hagberg H.; Edwards D.; Groenendaal F. Neurobio of Disease. 2016, 92,102–112
- [3] Farooqui A.; Farooqui T.; Panza F.; Frisardi V. Cell. and Mol. Life Sci. 2021, 69, 741–762
- [4] Spinelli M; Fusco S; Grassi C. Front. Neurosci. 2019, 13 Article 788
- [5] Folbergrová J.; Ješina P; Otahal J. Front. Neurosci. **2021**,15, Article. 634378
- [6] Spencer JS.; Alyson A.; Miller AA.; Andrews Z. Brain Sci. 2013, 3, 344-359
- [7] Yesilirmak DC.; S, Bekir.; Ergur U.;Tugyan K.; Ozbal S.; Guclu S.; Duman N,; Ozkan H. The Journal of Maternal-Fetal & Neonatal Medicine. **2012**, 25-2
- [8] Miralles RE.; Lodha A.; Perlman M. Biochimica et Biophysica Acta 1792. 2009, 401–408
- [9] Grieco M.; Giorgi A.; Gentile MC.; D'Erme M.; Morano S.; Maras B.; Filardi T. Front. Neurosci. 2019, 13, Article 1112
- [10] Yang D.; Nemkul N.; Shereen A.; Jone A.; Dunn R.; Lawrence D.; Lindquist D.; Kuan C-Y. Journal of Neuro. 2009, 29, 8669-8674
- [11] Portelli J.; Michotte Y.; Smolders I. Epilepsia. 2012, 53, 4: 585–595